Blank page.
Table of Contents

1 The First Day .. 1
 1.1 A Note on User ID and Passwords ... 1
 1.2 Intent and Philosophy of the Thin Client User Guide 1

Brief Tour of the Desktop and Customization ... 1
 1.2.1 Red Hat .. 1
 1.2.2 File Manager – Konqueror .. 2
 1.2.2.1 Change and Save the View .. 2
 1.2.3 Help Resources .. 3
 1.2.3.1 Setup the RDC Intranet ... 3
 1.2.3.2 Console Command Information: "man" .. 3

1.3 Things that you should ALWAYS do .. 3
 1.3.1 Secure Your Session ... 3
 1.3.2 Run Debugged Programs in Batch Using PBS Pro 3
 1.3.3 Follow Good Citizen Practices ... 4

2 Detailed Information on the Basics .. 5
 2.1 Logging In ... 5
 2.1.1 Changing Your Password .. 5
 2.2 Some Terminology ... 5
 2.3 Directory Structure ... 6
 2.3.1 Home Directory .. 6
 2.3.2 Project Directory ... 6
 2.3.3 Data Directories ... 6
 2.3.4 Public Directory ... 7
 2.4 Managing Your Files .. 7
 2.4.1 Moving, Copying, etc .. 7
 2.4.2 Permissions ... 7
 2.4.2.1 Determining Permissions .. 7
 2.4.2.2 Changing Permissions .. 8
 2.4.2.3 Disclosure Avoidance Review and Permissions 9
 2.4.3 gzip and gunzip .. 9
 2.4.4 Searching for Files and Processes .. 9
 2.4.4.1 Finding Files with "ls" .. 9
 2.4.4.2 Piping to grep ... 10
 2.4.4.3 Wildcards ... 10
 2.4.4.4 Finding Files with "find" ... 11
 2.5 Printing .. 11
 2.5.1 Printing Policy ... 11
 2.5.2 How to Print ... 11
 2.5.3 Cancelling Print Jobs ... 12

3 Software ... 13
 3.1 PBS Pro .. 13
 3.1.1 Batch Job Submission .. 13
 3.1.1.1 Writing Batch Scripts ... 14
 3.1.2 Interactive Job Submission ... 14
 3.1.3 Monitoring Jobs .. 15
 3.1.4 Useful PBS Pro Commands .. 15
 3.2 SAS .. 16
 3.2.1 Getting Started ... 16
 3.2.2 Libraries and Members .. 16
 3.2.3 autoexec.sas .. 16
 3.2.3.1 Synchronizing Your Home Directories 17
 3.2.4 Setup SAS to Print .. 17
1 The First Day
On the first day, the RDC Administrator will help you log on to the server using a thin client and show you some basic functions. After this you should work through the first section of this guide on your own.

1.1 A Note on User ID and Passwords
Your User ID is on your Account and Data Request Form. You really should memorize your User ID, but the ADRF is a good reference.

The system requires a strong password that will
• be at least 12 characters long.
• have at least 1 uppercase and 1 lowercase letter.
• have at least 1 number and 1 special character.
• NOT include your birthday, your SSN, names, any complete word (spelled forwards or backwards) or other similar elements.

Note that your password expires every 60 days, and you need to change it before the 60th day. Every time you log in there is a pop-up in the upper-left corner of the desktop that tells you how many days to expiration. Also, if you do not log on for 30 days, the password expires. Please keep this in mind if you do not come in regularly.

1.2 Intent and Philosophy of the Thin Client User Guide
The first section of this guide is designed to walk you through some straightforward tasks to familiarize you with the operating environment. The tasks set forth in Section 0 are intended (a) to make your use of the system easier and (b) to be done once and completed in one session. Although all of the tasks in this section are useful, some of them are not optional. You can identify these by the □ next to the task. This is meant to be a check box; once you have done it, you can check it off. If you have questions, ask your Administrator.

After you have completed the tasks in this first section, we highly recommend that you carefully read the rest of the guide before you are in a pickle, frantically looking for answers. This guide is full of helpful tips and information that will make your everyday use of the system easier and if you are in a jam, it is helpful to know that you have seen the answer before and, therefore, have an idea where to find it.

The Thin Client User Guide is a working document: it is constantly under revision. If you think something is unclear, something important is omitted, or you simply can contribute something useful, please let us know about it. Send an e-mail to your administrator with “TCUG suggestion - <brief description>” as the subject.

Brief Tour of the Desktop and Customization
This section will give you the basics to navigate the thin client environment and to make changes to the default settings on the system. Since your administrator has just helped you log in for the first time, let’s start with the bar at the bottom of the screen. In Linux, this is called the panel.

1.2.1 Red Hat
The predominant icon on the panel is the Red Hat; it is the leftmost icon on the toolbar. Clicking on this icon will give you the menu for most of the applications on the system. The five most frequently opened applications will be listed at the top of this
If you click on the Red Hat, you can make some adjustments to your computing environment. The following two sections describe changes that are required or recommended.

1.2.1 Set Some Preferences and Add Useful Buttons to the Panel

1. **Screen saver settings:** Right-click on desktop → Configure Desktop → Screen saver → in the box “Screen saver,” select “blank screen.”
 - in the box “Settings,” checkmark the radio button “Start automatically.” In the field “After” immediately below, make the contents 10 min.
 - also checkmark the radio button “Require password to stop.” In the field “After,” make the contents 10 sec. Click “OK”.
2. **Mouse preferences:** From the Red Hat menu select “Control Center.” A window will appear; in it there is a navigation bar to the left. From the navigation bar click Peripherals → Mouse → Advanced tab → in the field “Pointer acceleration” change contents to 1.3x. Click “Apply.”
3. **Keyboard preferences:** From the Red Hat menu select “Control Center.” A window will appear; in it there is a navigation bar to the left. From the navigation bar click Peripherals → Keyboard. The menus that appear are straightforward and the most common setting is for number lock. Click “Apply” when you are done.

To make changes to the panel, first unlock the panel by right-clicking anywhere on it and selecting “Unlock panel.”

- Panel preferences: Right-click the Red Hat icon, from the Panel Menu → Configure Panel… → Appearance tab → at the top, uncheck the box “Enable Icon Mouseover Effects.” Click “OK”.
- **Shell (Konsole):** right-click on the panel → Add Application to Panel → System → Terminal. Note that Konsole, terminal, shell, and prompt are all used as synonyms in this document.
- **Lock/Logout applet:** right-click on the panel, select “Add Applet” from the dropdown menu, a window will pop up, scroll down and select “Lock/Logout.”

You can also delete any of the default buttons on the panel (except for the Red Hat) if you do not want them there. Simply right-click on the button you do not want and select “Delete.”

1.2.2 File Manager – Konqueror

Konqueror can be opened either by clicking the shortcut on the desktop (the icon labeled “Home”—shown right) or the panel, or by typing `konqueror ~ &` at your terminal shell’s prompt.

When you open Konqueror, it will open in your home directory, not your project directory. To get to your project directory, type in the file path next to “Location:” Your RDC Admin can help you with the exact path, but will start with this: `/rdcprojects/`. There is important information on the home directory in section 2.3.1 on page 6.

1.2.2.1 Change and Save the View

If you do not like how the information is displayed or how much information is displayed, then from the menu click View → View Mode, then select the view that you like. It seems that the most popular view is “Detailed List View.” There is also an icon you can click to quickly change to “Detailed List View”:
If you want the view that you have selected to become the default, then from the top menu click Settings → Save View Profile “File Management”…. A window will pop up, simply click “Save.”

1.2.3 Help Resources
There is documentation for your project-approved data set(s) in the directory for that data set in the subdirectory “Documentation.” There are additional resources on the RDC intranet including a copy of the Thin Client User Guide.

1.2.3.1 Setup the RDC Intranet
The RDC intranet has user guides for SAS, R, Gauss and PBS Pro, as well as reference materials for Linux, the Konsole window (BASH), and much more. Here you can check server status by node and there is an increasing amount of documentation on various data sets.

The intranet URL is http://rdcdoc.ces.census.gov.

To access the intranet, launch Firefox: Red Hat menu → Internet → Firefox. Then save the RDC intranet as your homepage: select Edit → Preferences, a window will pop up, select the icon “Main” at the top. In the field “Home Page:” type http://rdcdoc.ces.census.gov and click “Close.” You can add a Firefox button to the panel; by following the general instructions in section 1.2.1.1.

1.2.3.2 Konsole Command Information: “man”
For information on Konsole commands type man <command> [ENTER] at the prompt. (To open Konsole click on the button you created in section 1.2.1.1 on page 2.) This will bring up the manual page for the specified command. You can even man man to learn about how to customize the information you receive using the man command. To page forward press [PAGEDOWN]; to page backward press [PAGEUP]. To exit the manual, type q.

1.3 Things that you should ALWAYS do
Following the recommendations in this section will greatly reduce the number of difficulties you and others will experience when using the RDC computer system.

1.3.1 Secure Your Session
If you walk away from your workstation, you should always lock your screen so that nobody else can access your account. Lock your screen if you will be away from your station for up to an hour. To do this, click the lock icon on the applet you created in section 1.2.1.1 or choose “Lock Session” from the Red Hat menu.

If you will be away from your workstation for more than an hour, it is important that you log out. You can do this by clicking the door icon on the applet you created in section 1.2.1.1 or from the Red Hat menu → “Log Out….” Regardless of how you request to log off, a confirmation window will pop up. You need to confirm your request to log out by clicking “End Current Session.”

1.3.2 Run Debugged Programs in Batch Using PBS Pro
The most efficient use of resources is to run debugged programs as batch programs. These are submitted via PBS Pro, a job management application. For full directions on how to use PBS Pro and run batch programs, see section 0.

It is not acceptable to run a process interactively overnight. Interactive sessions have a 10-hour time limit.
1.3.3 Follow Good Citizen Practices

All researchers share disk space, RAM, and processing resources on the RDC server. It is very important that everyone use only what they need. Good citizen practices are highlighted throughout this guide, but here, for easy reference, are a key few.

- Do program development and debugging on a subset of data.
- Interactive sessions are appropriate only for debugging programs or viewing results. (Interactive sessions time out after 10 hours.)
- Once debugged, run programs in batch.
- Don't use the whole data set if you don't need to.
- Properly configure your profile as specified in section 1.
- Close Stata and Matlab if you are not actively using them.
- Don't open more than one interactive session of Stata.
- Compress files using gzip.

Not following "Good Citizen Practices" can result in extremely slow processing times, system problems, and poor popularity among your peers. We reserve the right to kill processes that are creating problems such as system instability or problematic resource constraints. If you have a resource intensive program, especially one that is memory intensive, please notify your Administrator in advance with the program name(s) and when you plan to run it (them) so that your Administrator can protect your process(es) from being killed and ensure smooth operation of the computing system.
2 Detailed Information on the Basics

2.1 Logging In

To get started, double-click on the “Shortcut to RDC Blade Cluster” icon. At the next screen, in the field “login” type your User ID (this is printed in your ADRF) being sure to delete the spaces that pre-populate this field (the key combination [SHIFT]+[TAB] is helpful for this), and in the password field, type your password.

If the thin client has recently been rebooted, then a window will pop up that asks about a "RSA key fingerprint," click "yes."

When you log in, you will be on server rdc1-1; it serves as the login node and analytical processes cannot be run here. PBS Pro (job scheduling software) will route your process to one of the other 5 nodes of the cluster for processing.

2.1.1 Changing Your Password

With regular use, your password expires every 45 days. Reminder, you need to change it before the 60th day. To change it we suggest you do not use the pop-up dialog box that appears when your password is close to expiring. Instead, open a terminal shell and type `passwd` \[\text{ENTER}\] at the prompt. You will be asked for the "\textit{Kerberos 5 password}," type your current password. (If you are asked instead for your LDAP password, abort the process by closing the terminal and start over.) You will then be asked to enter your new password and to re-enter it for confirmation. (See section 1.1 on page 1 for password criteria.) If the password change has been successful then the phrase “all tokens are updated” will be returned.

If 30 days has lapsed since your last log in or if you last changed your password more than 44 days ago, then you will need to make an appointment with your administrator to establish a new password.

2.2 Some Terminology

There are two methods to tell the computer what you want it to do: CLI (Command Line Interface) and GUI (Graphical User Interface). Most tasks can be done by either method and, by in large, it is your preference that will dictate which you will use; however, sometimes you will need one or the other to do certain things.

Konsole, strictly speaking, is a KDE application that manages your terminal sessions; but here it is effectively synonymous with terminal, shell, command prompt, and prompt. You will use Konsole when you submit CLI instructions to the computer. This is necessary to launch programs like SAS and Stata, and to issue jobs in batch.

Konqueror is the KDE file management application, and as such is synonymous with file manager. You will use Konqueror when you want to access directories and files by GUI and to submit certain instructions to the computer. Konqueror is also a fully functional web browser that you can use to access the RDC intranet.

KDE is a graphical desktop environment for Linux. They start the names of their desktop components with the letter K.
2.3 Directory Structure

Researchers have access to the following directories (a) their home directory, (b) their project directory, (c) the data directories for their approved data sets, (d) the public directories, and (e) the temporary directories. GUI access to all directories is available via Konqueror.

2.3.1 Home Directory

Your home directory is located at /home/<User ID>. When you open the file manager it will automatically open to your home directory.

Never save anything to your home directory (except autoexec.sas and sasv9.cfg for SAS) as there are several negative repercussions to saving things in the home directory. One, files that are saved in the home directory will not be backed up or archived. Two, files that are saved in the home directory are not accessible to others on your project. Three, if the home directory becomes full, then no one can log in to the server.

The home directory is node specific. This means if you accidentally save something in your home directory, you need to know which node you were using so that you can move the file to your project space or delete it. This also means that if you change a configuration file in your home directory, you need to do this on the node 1 home directory and then synchronize your home directories. (Instructions in section 3.2.3.1 on page 17.)

2.3.2 Project Directory

To access the project directories:

CLI: From Konsole type cd /rdcprojects/<RdcCode>/ [ENTER]

GUI: From Konqueror, find on the right side of the window the tab with a pink folder on it, click this tab. This will bring you to the root directory. There will now be a list of subdirectories, one of which will be rdcprojects.

A list of RDC codes are on page 11 in section 2.5.2. Using a fictitious project number 999 from the Michigan directory, the project folder would be /rdcprojects/mc/mc00999. (Any User ID for this project will start with mc0999, notice that there are two zeros in the project directory and only one zero in the User ID for project numbers with 3 digits.) By default, each project directory will have three subdirectories: data, disclosure and programs. Users are allowed to create their own subdirectories inside these three pre-created subdirectories. Save all project files (i.e., data sets, programs, etc.) in your project directory.

At the moment, there are no quotas on the project directories, but keep in mind that you are sharing server space with all RDC users. Poor data management can bring the system down. It's important to clean out data files you will not need again and to compress (using gzip) large files that will not be used in the near future.

2.3.3 Data Directories

All of the source data is located in the various data directories (/economic, /decennial, etc.). Under the appropriate directory, you will find a subdirectory for each survey labeled with a three-letter abbreviation for that survey, such as “sip” for SIPP in the demographic data subdirectory. Within a survey subdirectory, you will see all the files available at CES for that survey. Though you can see all the files there, you will only be able to open the ones your project has permission to use. You will make your own extracts from these data. Any extracts you create must be saved in your project directory. Most data directories also contain subdirectories with documentation for those data.
2.3.4 Public Directory
The /public directory contains many useful files; these include things like frequently requested Stata .ado files, the public-use version of the SIPP 1990-1996 panels, Census Block Relationship files, 1972 and 1987 SIC codes, and popular public-use data sets.

2.4 Managing Your Files

2.4.1 Moving, Copying, etc.
Most all file management can be done GUI with Konqueror. You can drag and drop files to move or copy them to another directory. If it is easier, then you can open two Konqueror windows. You can also find the commands to copy, move, and delete files and create new directories in the menus. More information on Konqueror is in section 3.8.2 on page 25.

If you prefer to use the Konsole window, the basic file management commands are as follows. Note that you will need the prompt pointing at the appropriate directory to use FileName in the below commands, otherwise you will need to type the complete path and file name.

```
man
```

man is the MOST IMPORTANT command. It is short for *manual* and shows the help information for a given command. Syntax: `man <command> [ENTER].`

```
cd
```

cd changes the directory you are in. Syntax: `cd <DirectoryNamePath> [ENTER].` Simply typing `cd [ENTER]` will return you to your home directory and typing `cd .. [ENTER]` will move you up one directory.

```
acroread
```

acroread opens pdf files. Syntax: `acroread <FileName>.pdf & [ENTER].`

```
cp
```

cp copies a file. Syntax: `cp <FileName> <NewPath/FileName> [ENTER].`

```
ls
```

ls lists files in a directory. For more information on *ls*, see section 2.4.3 on page 9.

```
kdir
```

kdir Creates a new directory. Syntax: `mdir <NewDirectoryName> [ENTER].`

```
mv
```

mv moves files. Syntax: `mv <FileName> <PathOfNewDirectory> [ENTER].` You can use a wildcard to move more than one file at a time (e.g., use ".*" to move all files in the current directory). For more information on wildcards, see section 2.4.4.3 on page 10.

```
pwd
```

pwd prints the full pathname of the working directory (the directory you are in).

```
rm
```

rmb deletes specified file(s). Syntax: `rm <FileName> [ENTER].` Wildcards are permitted as in *mv* above.

```
rmdir
```

rmdir deletes specified directory. Syntax: `rmdir <DirectoryName> [ENTER].`

Other useful commands are explained and itemized in relevant sections of this guide.

2.4.2 Permissions
Permissions determine who is allowed access to which files and directories on the system.

2.4.2.1 Determining Permissions
Each file and directory has a set of permissions assigned to it. These tell the system who has permission to see, use, and modify the files. To determine the permissions on the file, you need to list the details for each file. You can do this by setting the view in the File Manager to a detailed list (View → View Mode → Detailed List View) or by typing `ls -l [ENTER]` in a Konsole window. Using Konsole will give you a listing like this.
drwxr-xr-- 5 la0123gu000999 la00123 512 Mar 18 00:05 dir_1
-rw-r----- 6 la0123herna888 la00123 1754 Jan 23 01:29 file1
-rw------- 9 la0123gu000999 la00123 5764 Jun 7 11:46 file2
-rw-rw-rw- 6 la0123gu000999 la00123 496 Mar 21 09:24 file3

The permissions are detailed in the first column. The first space indicates the type of item (d for directory or - for a file). The next nine spaces represent sets of three types of permissions for three user types. The three types of permissions are r=read, w=write, and x=execute (they will always be listed in that order) and the three user types are owner, group, and all others.

The first set of permissions is that of the file owner. The file owner is the person with the ID listed in the third column (la0123gu000999 and la0123herna888). The second set of permissions is that of the group, which is indicated by the fourth column (la00123). The third set of permissions is that of all other possible users.

Thus, in the listing above, the first line tells us that la0123gu000999 owns the directory called dir_1 and has full permissions (rwx). The group, la00123, has permission to read and execute the directory, but not to change the contents (write). Everyone outside of the group la00123 can read the directory. The second line shows that la0123herna888 owns the file called file1 and has read and write permissions. The group la00123 has permission only to read the file. All others have no permissions. The last line shows that everyone has read and write permissions on file3.

2.4.2.2 Changing Permissions

Let’s say you want someone else in your project group to be able to modify and run a file you created. You check the permissions and see that the group is assigned read-only permissions. You will need to change the permissions to rwx for your group. Note that you can only change permissions on files or directories you own.

GUI: To change the permissions, right-click on the file and choose “Properties.” Click on the tab labeled “Permissions”, and then the “Advanced Permissions” button. Here you can change the permissions severally where read=“show entries”, write=“write entries”, and execute=“enter.” Then click “OK” to exit “Advanced Permissions.” If you are changing permissions for a directory, you can click the box at the bottom to “Apply changes to all subfolders and their contents.” Click “OK” to apply the changes and exit the “Properties” menu.

CLI: If you prefer, you may also change permissions in the Konsole window using the chmod command. Syntax: `chmod (u,g,o)=(r,w,x) <FileName> [ENTER]`

Where u=user, g=group, o=others and (r,w,x) refer to permissions read, write, and execute. If you are not already in the directory where this file is stored you must either issue a cd command to the correct directory or include the entire path name for the file.

Using the example from the previous section, let’s say la0123gu000999 wanted to give the group read and write permissions to file2. The command for that would be `chmod g=rw file2`. Now la0123gu000999 decides that people in the group shouldn’t be able to modify or execute file3 and that others should have no permissions. To set read-only permissions for the group on file3, la0123gu000999 would use `chmod g=r file3`. To remove all permissions for others, la0123gu000999 would type `chmod o=-rw file3`. Note the minus sign and note that two separate commands are necessary to issue dissimilar permissions to two user types. You can issue one command if permissions are the same for two or more user types.
2.4.2.3 Disclosure Avoidance Review and Permissions

When you put files into the disclosure directory for disclosure avoidance review, be sure to give the group full permissions to all the files (directories included). The Disclosure Officer is part of your group and she or he needs access to these files.

2.4.3 gzip and gunzip

gzip is a compression command. It allows compression of individual files or the contents of entire directories easily while maintaining the properties of the file (i.e., ownership, creation date, etc.). A gzipped file will be “renamed” to include a .gz file extension. For example, file mystuff.log would become mystuff.log.gz once compressed using gzip.

CLI: To compress individual files, open a Konsole window; navigate to the appropriate directory and at the prompt type `gzip <FileName>` [ENTER].

To compress everything in a directory, type `gzip –r *` [ENTER] at the prompt. This recursively goes down through the directory tree compressing all files along the way.

gunzip is just as easy to use. Simply replace `gzip` with `gunzip` in the above instructions to undo the compression.

2.4.4 Searching for Files and Processes

2.4.4.1 Finding Files with “ls”

ls is a Linux command that lists the contents of a directory. Two common uses are (a) discover if the file the user is looking for is in a certain directory, and (b) to get an overall feel for the contents of a directory. For example, if after typing `ls` at the prompt, the user is sees a list of files ending with “.gif” then the user might surmise that this directory is used to store image files.

ls Syntax

`ls <options> <DirectoryPath> or <SearchTerm>`

When `ls` is specified alone, then no options are assumed, and files are listed for the current directory. Typing `ls` at the prompt will simply list the contents of the current directory. Typing a different directory path will list the contents of the specified directory. Example: `ls /usr/bin/` lists the contents of the directory /usr/bin.

You can also specify that only certain files are listed. Example: `ls log` lists a file called “log” if it exists in the current directory.

Common ls Switches

The options that accompany a command are called switches in Linux. Some of the common switches for ls are

- `–a` lists all of the files in a directory, including hidden files (those starting with “.”).
- `–l` gives the list in long format, which includes information about the last date the file was modified and who has permissions to access the file.
- `–R` recursively lists all subdirectories in the directory.

You can also combine switches. To specify both the –a and the –l switches type `ls –al /usr/bin/happ*` [ENTER] at the prompt. This displays the long form of all files in the directory /usr/bin whose first four letters are happ.
Note that you cannot recursively search for a term using ls; this is why you would pipe to grep...

2.4.4.2 Piping to grep

Piping your output to grep is a clever use of commands in Linux. Here is a summary.

Piping

Piping is adding a "|" after any command. This takes the output from that command and uses it as an input for the command that follows instead of immediately displaying the output. The key combination for | is [SHIFT]+[\].

grep

grep is a command that matches information specified by the user. This is useful when you have a large amount of text that you need to search.

Piping to grep

This is how you can use these two together: Let's say you have many files in your directory and you're looking for one that you created in July. You could type `ls –l` [ENTER], but since you have a lot of files, that would give you several pages to look through. A more effective way to do it would be to pipe the output to grep with "Jul" as the search term. You would type `ls –l | grep Jul`. This way only the lines of output from `ls –l` that have Jul somewhere in the line will be displayed.

Note that to search for a file name that contains a space (we strongly discourage the use of spaces in either a file or directory name), put quotes around the search term, otherwise the space will be interpreted as indicating the start of a new input. For example, to search for a file called my file.txt, you would type `ls “my file.txt”`. The same applies to the grep command as well.

2.4.4.3 Wildcards

You can also use wildcards to make searches more versatile and useful.

* The star will search for any number of characters in addition to your search term.

Examples:

* `ls *.log` will list all files that end in .log regardless of how long the file name is.

* `ls extract.*` will list all files that start with extract regardless of the file extension. So you might see `extract.log`, `extract.lst`, `extract.sas7bdat`, `extract.dta.gz`, etc.

? The question mark will search for as many random characters as there are ?s.

Examples:

* `ls ?????.log` will list all files that end in log and have a four character file name.

* `ls extract.??` will list all files that start with extract and have a three character file extension. As above, `extract.log` and `extract.lst` would be listed, but `extract.sas7bdat` and `extract.dta.gz` would not.

[] The square brackets can be used to contain choices for a single character and lists.

Important: square brackets work as a wildcard only when they are in the first position of the search term!

Example:
If you have a number of files in a directory and you would only like to list those that either start with the word “bat” or “sat” you could type `ls [bs]at*`. Notice the [] contain the two options, in this case either “b” or “s.” This search will yield results like battery.dta and satire.sas7bdat.

You can also use square brackets to contain an ordered list, for example if you have a directory full of census files called XXXXCensus where XXXX stands for the year (1997, 1892, etc.), you can list only those between 1950 and 1980 by using a list in the square brackets, `ls [1950-1981]Census*`.

2.4.4.4 Finding Files with “find”

The `find` command is a powerful searching tool that helps you find a file and its path. `find` has a difficult syntax which is beyond the scope of this guide. Rather than trying to explain it completely, an example will be given along with some explanation. This should be enough to allow you to use it easily. Here’s the example.

```bash
find -type f -name "census*" -print [ENTER]
```

This command asks the system to find files called census and census+something. Wildcards work within the quotes, but the remaining elements in the quotes are case sensitive. The search is started in your current directory, continuing down through the directory tree. You can’t pipe your output to grep. You can match dates, file sizes, etc., and you can search for directories instead of files; however, as mentioned, the syntax is rather involved. Using the above example but replacing census* with your search term should be enough in most cases.

For complete information on `find`, type `man find` at the Konsole prompt.

2.5 Printing

2.5.1 Printing Policy

Printers are located in the RDC Administrator’s office or in a locked box if the Administrator does not have a separate office. You may send jobs to the printer at any time, but can pick up your printed files only when the RDC Administrator is present. All printouts have a watermark that reads, “Disclosure Prohibited—Title 26, USC and Title 13, USC.” Notify your Administrator immediately if your printouts do not display this phrase.

Absolutely no printouts or anything containing confidential information may leave the RDC. Printouts may not leave the RDC even if they have no confidential information on them. All research results are released electronically. If your project uses FTI be sure to log the creation and destruction of all printouts containing data. For more information on these topics, please consult *The Researcher Handbook*.

Do not leave any undisclosed materials (including printouts and notes) unsecured. Only others with Special Sworn Status who are assigned to your project are allowed to see the undisclosed data or output from that project. If you want to keep printouts for future use, then you must lock them up in the filing cabinet assigned to your project. If you no longer need a particular printout, then you must shred it.

2.5.2 How to Print

GUI: All applications have a menu option to print. Simply open the file that you want to print and select file → print from the menu. You may have to manually select your printer from the dropdown menu the first time you print.
If you attempt to print and there are no printers listed in the dropdown menu, then there is a problem; notify your Administrator immediately.

CLI: If you prefer, then you can submit print commands from a Konsole window. From the appropriate directory or using the complete pathname, the basic print command is

```
lp -d <PrinterName> <FileName> [ENTER] OR sometimes
lpr -P <PrinterName> <FileName> [ENTER]
```

RDC Codes and Printer Names

<table>
<thead>
<tr>
<th>RDC Name</th>
<th>RDC Location</th>
<th>Printer Name</th>
<th>RDC Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>Federal Reserve Bank of Atlanta</td>
<td>AT-BW</td>
<td>at</td>
</tr>
<tr>
<td>Baruch</td>
<td>Baruch College</td>
<td>NY-BW</td>
<td>ny</td>
</tr>
<tr>
<td>Berkeley</td>
<td>University of California, Berkeley</td>
<td>CB-BW</td>
<td>cb</td>
</tr>
<tr>
<td>Boston</td>
<td>NBER, Cambridge, MA</td>
<td>BR-BW</td>
<td>br</td>
</tr>
<tr>
<td>CES</td>
<td>Census Headquarters, Suitland, MD</td>
<td>WO-BW</td>
<td>wo</td>
</tr>
<tr>
<td>Chicago</td>
<td>Federal Reserve Bank of Chicago</td>
<td>CH-BW</td>
<td>ch</td>
</tr>
<tr>
<td>Cornell</td>
<td>Cornell University</td>
<td>CO-BW</td>
<td>co</td>
</tr>
<tr>
<td>Michigan</td>
<td>University of Michigan</td>
<td>MC-BW</td>
<td>mc</td>
</tr>
<tr>
<td>Minnesota</td>
<td>University of Minnesota</td>
<td>MN-BW</td>
<td>mn</td>
</tr>
<tr>
<td>RTI</td>
<td>Research Triangle Park, NC</td>
<td>RT-BW</td>
<td>rt</td>
</tr>
<tr>
<td>Seattle</td>
<td>University of Washington</td>
<td>NW-BW</td>
<td>nw</td>
</tr>
<tr>
<td>Stanford</td>
<td>Stanford University</td>
<td>ST-BW</td>
<td>st</td>
</tr>
<tr>
<td>Texas</td>
<td>Texas A&M University</td>
<td>TX-BW</td>
<td>tx</td>
</tr>
<tr>
<td>Triangle</td>
<td>Duke University</td>
<td>TR-BW</td>
<td>tr</td>
</tr>
<tr>
<td>UCLA</td>
<td>University of California, Los Angeles</td>
<td>LA-BW</td>
<td>la</td>
</tr>
</tbody>
</table>

2.5.3 Cancelling Print Jobs

From the Red Hat menu select Settings → Printers → Jobs tab. Right-click on the print job you need to cancel and from the dropdown menu select “Remove.” Once this command is executed, the print job is stopped at the point where the file is going into the print queue. Because the print queue is designed to hold several pages, the printer will not stop immediately.
3 Software

We offer many applications for statistical analysis. It is important to point out, though, that we offer support for two analysis packages only: SAS and Stata. With that said, we try to provide as much information about other applications as possible. If you have familiarity with specific applications or can offer guidance that might benefit other users, then your contribution would be much appreciated.

What is available?

- PBS Pro
- SAS
- Stata
- Gauss
- LaTeX2e
- Matlab
- Sudaan
- OpenOffice
- R
- Various text editors

3.1 PBS Pro

About the RDC Server

The RDC Blade Cluster is a group of six servers that communicate with one another, but operate independently. Each server in the cluster is a node and is identified by the last number of its server name. For example, server rdc1-1 is called node 1, rdc1-2 is node 2.

Only nodes 2 to 6 are able to run statistical analysis applications. Node 1 serves as the “login node.”

The purpose of the login node is twofold. First, it provides you a place to conduct tasks that are not resource intensive without being hindered by slow responses due to heavy computational use on the system. Typical login node tasks would include writing and editing code, preparing files for disclosure avoidance review, or creating tables. Second, it is a portal to the other nodes of the cluster which can run analytical software. PBS Pro facilitates access to the analytic nodes.

What is PBS Professional (PBS Pro)?

PBS Pro is a job scheduler that works across all nodes of the RDC server cluster. It evaluates the available resources on each node and assigns your job(s) accordingly. Use of PBS Pro will improve efficiency, stability, and maximize the resources currently available on the servers.

PBS Pro is used to run ALL statistical analysis jobs on the cluster – batch jobs and interactive jobs.

PBS Pro matches the resources requested by each job to the resources available on the cluster nodes, and assigns the job to a node that can accommodate the request. If there is no available node that can satisfy the request, the job is held in the queue until the resources are available to run the job. **Note – you should use batch mode except when debugging a program.**

3.1.1 Batch Job Submission

Users run batch jobs by expressing those jobs as “job scripts” and submitting those scripts to a queue. We have pre-written scripts for some applications for ease of use. These are called “wrappers”. You can submit batch jobs by using one of the wrapper scripts for SAS, Stata, Gauss and R. From the appropriate directory or using the complete pathname:
• qsas program_name.sas & [ENTER]
• qstata program_name.do & [ENTER]
• qgauss program_name & [ENTER]
• qR program_name & [ENTER]

Once you submit a job to PBS Pro you will see output like 25309.rdc1-1. The five-digit number is the PBS Pro job identifier which is used for monitoring the process.

These wrappers may have additional parameters you can set to request more resources if your processes require them. By default, all jobs submitted to PBS Pro are allocated 1 CPU and 5 GM of memory. To see what can be changed while still using the wrapper script, type the wrapper name on the command line by itself and press enter.

3.1.1.1 Writing Batch Scripts
Under certain circumstances, you will need to write your own batch script to submit jobs to PBS Pro. This will be the case when using MatLab and Sudaan or if the wrapper cannot accommodate the parameter changes you need. Writing your own script gives you more control and allows you to use one or more "PBS directives." (See PBS Pro User Guide on rdcdoc.)

All basic PBS Pro batch scripts begin with the same three lines. The second line, even though it looks like it's commented out, is where you specify the PBS Pro directives for the program. In the example below we are requesting 1 CPU and 8 GB of memory and using Stata for the analysis.

The script name is example.bash and it is saved in /rdcprojects/XX/XX0NNN:

<table>
<thead>
<tr>
<th>Script text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) #!/bin/bash</td>
<td>(1) Specifies which kind of shell to use (bash) – never change this.</td>
</tr>
<tr>
<td>(2) #PBS -l select=1:ncpus=1:mem=8gb</td>
<td>(2) Tells PBS Pro to expect directives and what they are. For clarity, the first item after #PBS is dash "L" and next is select equals one, ncpus is number of CPUs.</td>
</tr>
<tr>
<td>(3) cd /rdcprojects/XX/XX0NNN/programs</td>
<td>(3) Change directory to full path of program file.</td>
</tr>
<tr>
<td>(4) stata-se -b do program_name.do</td>
<td>(4) Command to launch job.</td>
</tr>
</tbody>
</table>

You will submit the script to PBS Pro at the command line. With the prompt pointing at the directory where example.bash is saved, type: qsub example.bash & [ENTER]

Obviously you will change the last line of the script to use a different application. Refer to the appropriate section for information on the application you would like to use.

3.1.2 Interactive Job Submission
PBS Pro supports "interactive batch jobs." While we understand that you will need to run interactive jobs, we ask that you use batch mode whenever possible, particularly for long running jobs that you are going to leave unattended. When a batch job completes, it terminates...
and the resources that were allocated to it are released back into the pool where they can be used by others. An interactive batch job completes when the user types “exit” to terminate it.

To launch an interactive batch session, enter type `qsub -I -X` [ENTER]

This will drop you in a shell session on another node as if you had logged into it through SSH. From here, you can modify and run your programs or run GUI versions of your desired applications.

Type “exit” to exit the interactive session when you are finished. **Do not leave the interactive session running when you close NX! Also note that interactive jobs have a 10-hour time limit.** After 10 hours the interactive session will automatically terminate without warning.

If you need more resources than the default, you can include a resource specification. For example, `qsub -I -X -l select=1:ncpus=1:mem=7gb` where after `-X` is “dash lower case L”.

3.1.3 Monitoring Jobs

When you submit a PBS Pro job, the system will return a number to identify the process. For example, `23313.rdc1-1`. You will use PBS Pro and this number to monitor your job.

To view the job queue and check the status of your job, type `qstat` [ENTER] at the prompt. The output will look like

```
Job id        Name    User       Time Use   S  Queue
------------  ------  ---------  ---------  -  ----- 
23313.rdc1-1  STDIN   macke004   00:00:00   R  workq
```

Column S is job status. Entries you could see in this column: **Q** means the job is waiting for resources, **R** means the job is running, **S** means the job is suspended, and **E** means exiting.

There are many options to use with `qstat` to get more information that is more detailed: `qstat -a` shows all jobs, `qstat -n` shows execution node, `qstat -f` shows full details, and really nice to use sometimes is `qstat -fan`.

3.1.4 Useful PBS Pro Commands

Commands

- `pbsnodes -a`: Gives the status of the execution nodes, shows what jobs are running on them, what resources are available, what resources are allocated, etc.

- `qdel <job identifier>`: Kills a running job or deletes queued job. You can only delete your own jobs.

Tips

Directory paths: When you submit a PBS Pro job, it will by default “begin” in your home directory. It is often convenient to change to the directory that you are working in so that you do not have to specify complete pathnames.

Stdout & Stderr files: When you submit a PBS Pro job, it will create an output file, `filename.oXXXXX`, and possibly an error file, `filename.eXXXXX`, in the directory where you
submitted the job. These can be useful for troubleshooting problems, otherwise they can be deleted when the job is complete.

Help Documentation – Extensive documentation is available /apps/pbspro/documentation.

3.2 SAS

All data sets provided to you by CES will be in SAS format. So even if you don’t plan to use SAS to do your work, you’ll have to start out in SAS in order to convert your data to a different format. This section briefly summarizes a few points about using SAS; extensive documentation about the application is available on the RDC intranet (see section 1.2.3.1 on page 3).

3.2.1 Getting Started

To launch a SAS batch job, at the terminal prompt type qsub program_name.sas [ENTER]

To start an interactive SAS session, at the prompt of a terminal window, type qsub -I -X [ENTER] to get to a research node, then type sas & [ENTER].

3.2.2 Libraries and Members

Libraries

SAS has its own file system that consists of “Libraries” and “Members.” Libraries are user-defined "pointers" that instruct SAS where to look when you refer to a specific library; you want SAS to read data from a certain directory and save the files it creates to a directory. A libname statement in SAS specifies the directory in which SAS should look. This is established by typing a statement in this format. libname <libref> 'PathNameOfDirectory';

For example, let’s say you have a directory, /rdcprojects/ch/ch00999/data/SasFiles, in which you want to save your SAS data and programs. You need to make a new library in SAS. You call it whatever you’d like (within the rules of library names), for example library1, and tell SAS that this library references the directory /rdcprojects/ch/ch00999/data/SasFiles. To assign the library, type this in the program editor.

libname library1 '/rdcprojects/ch/ch00999/data/SasFiles';

So, during this SAS session, whenever you tell SAS to read from or save to library1 it actually reads from or saves to /rdcprojects/ch/ch00999/data/SasFiles.

Note that libnames should actually be assigned in a file called autoexec.sas, not in your programs or the program editor. See section 3.2.3 below for more on this.

Members

Within Libraries are Members; members are just the files in a Library. When you want to reference a file in SAS you need to reference it by LibraryName.<MemberName>. So if you had a SAS data set called “output1” saved in your “/rdcprojects/ch/ch00999/data/SasFiles” directory, you would reference it in SAS as library1.output1.

3.2.3 autoexec.sas

Libname and options statements are often included in a file called autoexec.sas. This is a user created program file residing in the user’s home directory. It is automatically run when SAS is invoked. Like all SAS programs, autoexec.sas can be created using any text editor.

Important: Stating default options and librefs in autoexec.sas instead of individual programs eliminates the need to change programs when data are moved. It is recommended that ONLY
options and libnames be set in the autoexec file even though any legal SAS command can be included in the autoexec file; do not run data and/or proc steps from this file. Some important options are shown in this command line.

options compress=yes mlogic mprint ls = 80 ps = 60;

The second and third options deal with macro programming. mlogic outputs the value of each macro in the log window as it is encountered. mprint prints out the program code as reflected by the value of the macro in the log statement. These two options are very useful in debugging macro programs; they are not turned on by default.

Macros are probably the most efficient way of writing SAS code that repeats itself. A well-written macro program a couple of screens long can execute hundreds of data steps and proc statements. As such, we encourage the use of macros.

Caution: turning on mprint for a macro program that generates large amounts of program code could fill up the log window during an interactive SAS session. This will cause SAS to stop until you manually confirm that you would like to clear out the log window. For a batch job, this will not be a problem.

3.2.3.1 Synchronizing Your Home Directories
If you change your autoexec.sas file, you will have to synch your home directory across all nodes so that SAS can access this no matter where PBS Pro sends your job. Create and make changes to autoexec.sas on node 1 and run the synchronization script in /public/programs named sync_home.bash while on node 1 to copy the contents of the node 1 home directory to the other home directories. Open a Konsole window on node 1 and at the prompt type cd /public/programs [ENTER] bash sync_home.bash [ENTER].

3.2.4 Setup SAS to Print
There are three steps to ensure that SAS files will print correctly.

First, after SAS has launched (see 3.2.1 above), go to the “SAS: Log” window, then file → print set up. “postscript level 1” will be highlighted. At the bottom, click properties → destinations tab → device type → printer → “OK” → “OK”. (To close SAS, click on the “SAS: Session Management” button from the desktop panel. From the window that appears, select Terminate → “OK”.)

Second, you need to manually set your printer in your .bashrc file. (Go to your home directory → View Hidden Files → open .bashrc with text editor.) Add this line to the bottom of your .bashrc
export PRINTER=<PrinterName>. A list of printer names is on page 12.

Third, create an autoexec.sas file with at least the line options ls = 80 ps = 60;
See section 3.2.3 above.

3.2.5 SAS Help
Reference materials are available on the RDC intranet (see section 1.2.3.1 on page 3).

Outside of the RDC, you can access SAS online documentation. A couple good links are
http://support.sas.com/documentation/onlinedoc/base/index.html and
3.2.6 SAS Memory Error

If you are using really big data sets in your analyses, you will sometimes need to change the memory settings in SAS. Add these lines to the bottom of your .sas program (see 3.1.1.1).

```
OPTIONS FULLSTIMER;
PROC OPTIONS GROUP=MEMORY;
RUN;
PROC OPTIONS;
RUN;
```

This will print information about resources used for the program's processes in the log file. Then line (4) of the batch script should read: `sas <file_name> –MEMSIZE 2G –REALMEMSIZE 0 –SUMSIZE 512M –SORTSIZE 512M –SYNCHIO –NOTERMINAL –NOTHREADS –VERBOSE &`

3.2.7 A SAS Example

Below is a very short SAS program that uses some basic SAS commands. Each line has a comment that starts with /* and ends with */ that explains what the code is doing. SAS commands end with a semicolon.

```sas
libname from '/economic/data';
    /* This is not necessary if this statement is already in your autoexec.sas file, but it establishes a libref named from. (This is the source library of the data set in this example.) */
libname to '/rdcprojects/ny/ny00999/data/SasFiles';
    /* This is not necessary if this statement is already in your autoexec.sas file, but it establishes a libref named to. (This is the destination library of the data set in this example) */
data to.data1 (keep = var3 var17 var53 var101 var3_2);
    /* Either creates a new member called data1 in the library to or replaces an existing member by the same name. The keep statement drops any variable not specified after the equal sign. That is, only the variables var3, var17, var53, var101, and var3_2 will be present in the new data set so be sure to list any variables that you create in the keep statement, too. */
set from.data1992b;
    /* Takes the data that is in member data1992b in the library from and copies it into member data1 in library to. */
if var101 = 2046;
    /* Drops all observations where the variable var101 is not equal to 2046. */
var3_2 = var3 * 1000;
    /* Generates a new variable called var3_2; for every observation in the data set, it takes the value in var3, multiplies it by 1000, and stores it in var3_2. Note that if a variable called var3_2 already exists, then this statement would overwrite its contents. */
if var17 = 0 then var17 = 496;
    /* Searches through every observation and if the value of var17 equals zero, then the value of var17 is changed to 496. */
run; /* Executes the program; if you submit your statements without a run command, then nothing will happen. */
```

3.2.8 Exporting SAS Data Sets

Since all of the data provided to you by CES are SAS data sets, you will need to convert the data to a different format if you need or want to use a different program.
3.2.8.1 Creating a SAS Data Extract

For either of the two exporting instructions that follow, you will first need to create a SAS data set that selects the variables that you want in the final data set. (Prior to creating the extract, you can determine which variables you want by doing a proc contents on the original SAS data set. Let’s say that you want to create this extract in your project’s data directory, /rdcprojects/br/br00999/data, and name it data2export.

```
libname from '/economic/data';
/* This is not necessary if this statement is already in your autoexec.sas file, but it establishes a libref named from. (This is the source data set library.) */
libname to '/rdcprojects/br/br00999/data';
/* This is not necessary if this statement is already in your autoexec.sas file, but it establishes a libref named to. (This is the destination data set library.) */
data to.data2export (keep = var1 var4 var73 var105);
/* List the variables from data set data2004a that you want in the new data set after keep = , no separator is need. */
   set from.data2004a;
run;
```

3.2.8.2 Exporting the Extract to Stata

Once you have created the extract to.data2export, then you can write code to create a Stata data set. Let’s say that you want to save this in the same directory and that you want to name the new data set mydata.dta. Here is the SAS program you would write.

```
proc export data = to.data2export
   /* The libname statement was already issued either in your autoexec.sas file or in the "Creating a SAS Data Extract" step. */
   outfile = “/rdcprojects/br/br00999/data/mydata.dta”
   dbms = stata replace;
   /* Notice that there is no semicolon after the first and second line of this code! */
run;
```

You then use the file as you normally would in Stata.

3.2.8.3 Exporting to other Applications

As far as we know, and contribution by users would be appreciated on this, all other programs can import .csv files. Once you have created the extract to.data2export, then you can write code to create a csv file. Let’s say that you want to save this in the same directory and that you want to name the new csv file mydata.csv. Here is the SAS program will write.

```
proc export data = to.data2export
   /* The libname statement was already issued either in your autoexec.sas file or in the "Creating a SAS Data Extract" step. */
   outfile = “/rdcprojects/br/br00999/data/mydata.csv”
   dbms = csv replace;
   /* Notice that there is no semicolon after the first and second line of this code! */
run;
```

You will then need to create code to import this new data set to the application you want to use for data analysis. You need to be careful as there are known problems with this method: PPNs can inadvertently be converted to a numeric format; if a PPN starts with a zero, the zero could
be removed. The exact difficulties in using this method will vary depending on your set of circumstances. You should always check your data after you’ve converted it in order to identify any problems. Some problems are minor and may only be annoying (such as converting a ten-digit PPN with a leading zero into a nine-digit number) others may critically effect your program.

To get basic statistics on the original data set, type the following in SAS.

```sas
proc contents data = to.data2export;
run; /* Lists basic information on the data set: size, variables, etc. */
proc means data = to.data2export;
run; /* Gives basic statistics on numeric variables: mean, min, max, etc. */
proc print data = to.data2export (obs=5);
run; /* Prints the first 5 observations in the data set. */
```

You will need to write equivalent code in the application you want to use for data analysis to determine if there are any potential problems. Again, any assistance by users would be appreciated on this topic.

3.2.9 SAS Data Quality

To use SAS-DQ, you need to tell SAS where the DQ file is located. Add this line to the top of your SAS program.

```sas
%DQLOAD (DQLOCALE=(ENUSA), DQSETUPLOC='/apps/SAS/v9.2/SASFoundation/9.2/misc/dquality/dqsetup.txt');
```

If your program will not run, regardless of the error message (or lack thereof), try running your program as if you were having a memory error with SAS. Instructions are specified in section 3.2.6 on page 18.

3.3 Stata

3.3.1 Getting Started

To launch a Stata batch job, at the terminal prompt type `qstata program_name.do` [ENTER]

To start an interactive Stata session, at the prompt of a terminal window, type `qsub -I -X` [ENTER] to get to a research node, then type `xstata-se &` [ENTER].

Stata-MP is available, but there are only five licenses. To use it, follow the instructions above by substituting `mp` for `se`. Use your good judgement as to whether you need to use mp or if se is suitable. If in doubt, use Stata SE.

3.3.2 Stata Frames and .do Files

Stata Frames

Stata opens as one large window that is divided into several sections termed “frames.”

<table>
<thead>
<tr>
<th>Frame</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output frame</td>
<td>Contains commands you send to Stata and Stata’s response.</td>
</tr>
<tr>
<td>Command frame</td>
<td>You issue commands to Stata from this frame.</td>
</tr>
<tr>
<td>Variables frame</td>
<td>Every variable in the loaded data set is listed here.</td>
</tr>
<tr>
<td>Previous Commands frame</td>
<td>Every command you have issued to Stata during the session is stored here.</td>
</tr>
</tbody>
</table>
The "Previous commands" and "Variables" frames are both intended to make Stata easier/faster to use interactively since you can simply click on variable names or previous commands to load them into your command window instead of typing the entire command or list again.

Stata .do Files

Usually you need to issue many commands to Stata and you would like the ability to issue them again easily and/or document all of the commands you've issued. To do this, you need a "do" file. A do file is just a regular text document that you can create in a text editor or Stata's "do file editor" which contains all of your Stata commands. When you run a do file by selecting the "do" option from the file menu, Stata opens your do file and runs each line one at a time as if you had typed each line in the command frame.

3.3.3 Using .ado Files

The RDC servers are intentionally isolated from the web, which prohibits the standard Stata procedure for applying updates to the software. If you need an ado file that isn't available, retrieve it outside the RDC from the Stata web site, and submit it to your administrator as a user provided program. You can also check /public/programs/stata to see if what you're looking for is already uploaded there. Once uploaded, to use an .ado file you can

(a) specify the full path when you call it from your do program
 (e.g., /public/programs/stata/<ado_file_name>),
(b) copy it to your stata working directory where stata will see it (type adopath in Stata to see the order Stata looks for ado files), or
(c) set a system directory with the stata sysdir command and define its path. For example, sysdir set PLUS \r\n "/rdcprojets/br/br00999/programs/ado" will reassign PLUS (this usually points to ~/ado/plus/ which is not a directory in our systems) to your personal ado directory in your project space (you will need to create this directory). Type the command sysdir in stata to check that this worked.

3.3.4 System Performance for Stata Users

It is CRITICAL to manage memory when using Stata. Stata sessions require dedicated system memory allocated to them and this may cause the server to run out of system memory. Please use the following guidelines.

1) Do program development and debugging on a subset of data. Most interactive use of Stata can be performed with a subset of observations. The command to get a subset is use <FileName> if _n<=200 (This uses only the first 200 observations of the file.)

2) Don't use the whole data set if you don't need to. Regularly, to open a Stata data set, you type use data_set. If you want to run analysis on specific variables in that data set, let's say variables named a, b, and c; then in Stata type use a b c using data_set.

3) Close out Stata to release memory. Memory is not released by Stata until the application itself is closed out, even if the program finishes running or if one resets memory with the set memory command. So, if you are not actively using Stata, then please close it.

4) Do not open multiple interactive sessions of Stata. (This follows from number 3.)

5) Run debugged Stata jobs in batch mode.
 qstata program_name.do &

6) Be courteous to your fellow users. Please don't run multiple jobs at once.

7) Kill off abandoned jobs. If you exit abnormally, then in many instances the system leaves your job(s) running or idling with the memory tied up. This strains the system and causes it
to behave erratically. Use `qdel <job_id> [ENTER] to delete jobs that are running or in
the PBS Pro queue.

3.3.5 A Stata Example

Below is a very short Stata program that uses some basic Stata commands. Each line has a
comment that starts with `/*` and ends with `*/` that explains what the code is doing.

```stata
log using "/rdcprojects/cb/cb00999/programs/logs/program1.log"
    /* By default, Stata output is sent to the output window and then discarded by Stata. If
    you want to save the results from a regression or to document what you're doing, then
    you will want to create a log file. A log file will take any output sent to the output window
    and store it in a file that you name. In this case, we've named both the file and the path;
    if you exclude the path, then your working directory is automatically selected. Also, note
    that we included the extension ".log" to our file name. If you leave that out, then Stata will
    by default create a ".smcl" file which is usually less desirable. */

use MyDataSet
    /* Loads a data set called "MyDataSet.dta." We have left off specifying a path, so Stata
    will look for this file in the current working directory. Stata assumes the .dta. Therefore, if
    you have a Stata file called "MyDataSet.txt" then you will need to specify the ".txt" at the
    end. */

sum
    /* Gives you summary statistics for the variables that have been loaded. */
gen x2 = x*x
    /* Creates a new variable named "x2." Stata will go through every observation and
    square the x value for that observation, storing the result in x2. Note, if x2 already exists
    then Stata will issue an error. */
tabstat x x2, stats(mean sd) column(stats)
    /* Summary statistics for x and x2, same as `summarize` command but excludes min and
    max which do not pass disclosure avoidance review (since min and max are statistics
    based on one observation, one survey respondent). */
edit
    /* Opens a spreadsheet like data editor. */
replace x2 = 0 if x == -5
    /* Searches through every observation of x and if it finds one that equals -5, it replaces
    x2 with the value of zero. Note, in Stata you set values with one equal sign, and
    compare values with two equal signs. */
regress y x x2
    /* Runs a simple OLS regression with y as the dependent variable. */
graph twoway scatter y x
    /* Graphs y and x. */
log close
    /* Closes your log (any further output will not be recorded). */
clear
    /* Removes all data from memory. */
exit
    /* Quits Stata. */
```

3.3.6 Printing Graphs to File

To export a graph from stata into an encapsulated postscript file, first generate the graph (using
the "graph" command, or "graph use filename" if the graph has been previously saved), and
then run the command "graph export filename.eps". The help file lists other supported formats
for the command (e.g. tif). Note that some formats are not supported (e.g. pdf isn't supported by
the translator, and wmf isn't supported in unix). Some researchers use .png files for LaTeX;
graph export filename.png works in interactive stata but not in qstata (e.g. which calls stata-se
and not xstata-se). You can still save stata graph files in batch, and then do the exports as a
separate program.

If you want to interactively print to a postscript file in Stata from the print menu, File → print.
Select "print to file" and then select where in your project directory you'd like to save it. Click
"Print." The command displayed in the Stata window should read something similar to:
You will receive an error message. Copy the Stata command from the display window and place double quotes around the file path and file name as shown below and resubmit the command.

\begin{verbatim}
translate @Graph /rdcprojects/ny/ny00999/Graph_name, translator(Graph2ps)...
\end{verbatim}

This will save the file "Graph_name" in the designated folder as a postscript file.

3.3.7 Stata Help

Each RDC has a set of Stata manuals. Outside of the RDC, you can access Stata online documentation. A couple good links are

- http://www.stata.com/links/resources1.html

3.4 Gauss

To start an interactive Gauss session, at the prompt of a terminal window, type `qsub -I -X [ENTER]` to get to a research node, then type `tgauss [ENTER]` at the prompt of a Konsole window. Your shell will be occupied; open another shell in the same Konsole window if you need it. (From the menu Sessions Æ New Shell.)

Outside of the RDC, you can access Gauss online documentation.

- http://www.aae.wisc.edu/aae637/gausscode.htm

3.5 MATLAB

To launch a MATLAB batch job, create a batch script.

<table>
<thead>
<tr>
<th>Script text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) <code>#!/bin/bash</code></td>
<td>(1) Specifies which kind of shell to use (bash) – never change this.</td>
</tr>
<tr>
<td>(2) <code>#PBS -l select=1:ncpus=1:mem=8gb</code></td>
<td>(2) Tells PBS Pro to expect directives and what they are. For clarity, the first item after <code>#PBS</code> is dash “L” and next is select equals one, ncpus is number of CPUs.</td>
</tr>
<tr>
<td>(3) <code>cd /rdcprojects/XX/XX0NNN/programs</code></td>
<td>(3) Change directory to full path of program file.</td>
</tr>
<tr>
<td>(4) <code>matlab -nodisplay -nosplash –r program_name.m > program_name.log</code></td>
<td>(4) Command to launch job. This line is recreated below to show where spaces are.</td>
</tr>
</tbody>
</table>

All users of the RDC share a limited number of MATLAB licenses. If you absolutely must run more than one MATLAB job at a time, then be sure to run both of them on the same node as the licenses are node and user specific. To determine the node of your current MATLAB job, type `qstat –n` at the command line. Then modify the 2nd and 4th line of your bash file to request...
that specific node and execute your 2nd MATLAB job. If your 1st job is running on rdc1-4, then your bash file should look like this:

```
#!/bin/bash
#PBS -l select=1:ncpus=1:mem=8gb
#PBS -1 select=1:ncpus=1:mem=5gb
cd /rdcprojects/XX/XX0NNN/programs
matlab -nodisplay -nosplash -r program_name2.m > program_name2.log
```

To start an interactive MATLAB session, at the prompt of a terminal window, type `qsub -I -X [ENTER]` to get to a research node, then type `matlab & [ENTER]`.

3.6 R

To launch a R batch job, at the terminal prompt type `qR program_name [ENTER]`

To start an interactive R session, at the prompt of a terminal window, type `qsub -I -X [ENTER]` to get to a research node, then type `R [ENTER]`.

Be sure not to use lowercase "r" as this will give you an error message. Your shell will be occupied; open another shell in the same Konsole window if you need it. (From the menu Sessions → New Shell.)

Outside of the RDC, you can access R online documentation. http://cran.r-project.org/doc/manuals/R-intro.html and http://cran.r-project.org/manuals.html

3.7 Sudaan

We offer SAS-callable Sudaan. To launch a Sudaan batch job, create a batch script.

<table>
<thead>
<tr>
<th>Script text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) <code>#!/bin/bash</code></td>
<td>(1) Specifies which kind of shell to use (bash) – never change this.</td>
</tr>
<tr>
<td>(2) <code>#PBS -l select=1:ncpus=1:mem=8gb</code></td>
<td>(2) Tells PBS Pro to expect directives and what they are. For clarity, the first item after #PBS is dash “L” and next is select equals one, ncpus is number of CPUs.</td>
</tr>
<tr>
<td>(3) <code>/rdcprojects/XX/XX0NNN/programs</code></td>
<td>(3) Change directory to full path of program file.</td>
</tr>
<tr>
<td>(4) <code>sudaan program_name.sas</code></td>
<td>(4) Command to launch job. This line is recreated below to show where spaces are.</td>
</tr>
</tbody>
</table>

To start an interactive Sudaan session, at the prompt of a terminal window, type `qsub -I -X [ENTER]` to get to a research node, then type `sudaan [ENTER]`. Your shell will be occupied; open another shell in the same Konsole window if you need it. (From the menu Sessions → New Shell.)

Outside of the RDC, you can access Sudaan online documentation.
3.8 Other Thin Client Applications

3.8.1 Konsole
Konsole is a program that manages shells for you; each terminal session is given a tab. Some helpful commands for Konsole are:

- **[CTRL]+c** ends the command and returns to prompt. This is helpful if you submit a command and are getting a lot of results.
- **↑ and ↓** at the prompt, these browse the command history.
- **[SHIFT]+[PAGEUP]** and **[SHIFT]+[PAGEDOWN]** allows you to browse the terminal buffer (to see the text that has scrolled off the screen).
- **[TAB][TAB]** (tab pressed quickly in succession) at the prompt will list all commands available on the system that fit the criterion you specify. For example, if you type `b` at the prompt and then press **[TAB][TAB]**, all commands that begin with b will be shown.

Konsole will automatically open in your home directory. To help ease navigation of directories, Konsole has a bookmark tool. You can use this instead of the often long `cd` command (`cd /rdcprojects/wo/wo00333/data/...`).

You can also change the default directory for the Konsole button that you created in section 1.2.1.1. Right click on it → Configure Terminal Button… → Application tab → in the field "Work path", type the directory you want opened by default (e.g., `/rdcprojects/cb`).

It is recommended that you change the size of the Konsole viewing window. Go to Settings → Size → 80X40(XTerm); then Settings → save as default.

3.8.2 Konqueror
Konqueror is the GUI file management application and it is a web browser. You can launch Konqueror:

GUI: Click the “Home” icon on the panel.
CLI: At the prompt type `konqueror / &`.

Note you may have to press [F9] in order to see the left-side navigation bar. To get to your home directory, click the House tab. To get to the root directory (the parent directory that lists all subordinate directories), click the pink folder tab.

If you would like Konqueror to open in a specific directory, you can type the entire path name (i.e., `konqueror /public/programs/sas &`). There is no corollary function for GUI, but you can change the directory assignment for the Home button in the Konqueror window. From Konqueror’s menu click Settings → Configure Konqueror… → in the field “Home URL:” type the directory you would like Konqueror to go to when you click Konqueror’s home button.

Tip: you can open two Konqueror sessions to make drag-and-drop file management easier.

To use Konqueror as a web browser, simply type the address (http://rdcdoc.ces.census.gov) in the location bar and then bookmark it. (Remember you do not have regular access to the internet in the RDC. http://rdcdoc.ces.census.gov is our intranet site for help resources.)
Konqueror has tabbed browsing. If you do not see tabs go to Settings → configure Konqueror → Web Behavior → Tabbed browsing box → uncheck the box “hide the tab bar…”.

3.8.3 OpenOffice

OpenOffice.org is an open-source office software suite. To open OpenOffice.org…

GUI: Red Hat → Office → OpenOffice.org Writer (for the word processor) or Red Hat → Office → OpenOffice.org Calc (for the spreadsheet)

CLI: at the prompt type `oowriter &` for the word processor and `oocalc &` for the spreadsheet.

If you wish to disclose a formatted document that you created using OpenOffice.org, you can either "save as" a Microsoft Office file extension, i.e., .doc or .xls, (and possibly encounter formatting errors) or you can download OpenOffice.org to your home computer for further editing. OpenOffice.org is a free program.

Outside of the RDC, you can access OpenOffice online documentation. http://documentation.openoffice.org/

If you have a very old project, you may have OpenOffice documents in an old format. If so, you might have to save them in the new format since the OpenOffice.org suite has been updated to a version which is international open standard format compliant. This means that documents that were created with the older version of the suite need to be saved in the new format to function properly (e.g., print). Simply click on your old file to open it, from the menu file → save as, when the new window pops up use the following table to determine your "save as" file extension.

<table>
<thead>
<tr>
<th>Type of Document</th>
<th>old file extension</th>
<th>save as…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>.sxw</td>
<td>.odt</td>
</tr>
<tr>
<td>Spreadsheet</td>
<td>.sxc</td>
<td>.ods</td>
</tr>
</tbody>
</table>

3.8.4 Text Editors

We offer a number of text editors on the thin client system. These include kate, kedit, kwrite, and emacs. You can launch most of them from Red Hat → Utilities → Editors.

3.8.4.1 Kate

We recommend that you use the text editor that you are comfortable with; however, if you are not committed to one or the other, then we recommend Kate for the following reasons.

- Kate allows you to select columns of data which makes manipulation of files easier. This is especially helpful for editing Stata log files by letting you easily delete undisclosable columns of output. To toggle this function on/off either use the mouse at the menu then Edit → Block Selection Mode or the keyboard combination [CTRL]+[SHIFT]+B.
- When using Kate to monitor batch processes, you can refresh the screen when your program has written to the file (as compared to opening and closing the file to determine if additional activity has occurred). Press F5.
• Kate is quite intuitive, behaving rather like a word processor in many ways, it has good help, and allows you to assign "sessions" which allows you to organize your programs. A Kate session may become cluttered if you do not normally sort your documents into different sessions. To remove a file from an active session in Kate, highlight it (on the right-side navigation bar) and then click the circle icon with an "X" (this is next to the printer icon).

• You can request that Kate recognize the language of many different applications and Kate will highlight the document accordingly.
 - For Matlab: Tools → Highlighting → Scientific → Matlab
 - For SAS: Tools → Highlighting → Sources → C++ (This is imperfect, but works well enough in most circumstances.)
 - For LaTeX: Tools → Highlighting → Markup → LaTeX
 - For script files: Kate automatically highlights script files when the file extension is bash.

Tip: if you run a search in Kate, then you press F3 to continue to the next incidence of the search term.

3.8.5 Pager

Pager is a handy tool that manages the four desktops that are available to you. On the panel at the bottom of your desktop you will see a little table with quadrants numbered 1 through 4. You can click on the numbers to get to a different desktop. The different desktops are nice so that no one becomes too cluttered. You may like to make the desktops task specific (e.g., by node, or application, etc.).
4 Trouble Shooting

If you are experiencing computer troubles, then these are the things to try and/or check before notifying your Administrator. Once you have located the description of your problem, it is best to follow the remedial steps in the order given.

4.1 The Description of the Problem is...

4.1.1 An Authentication Error
The problem is that the system cannot confirm your authority to log in.

1) Be sure that you have not included an extra zero in your User ID. For example, tr0578manhe133 is correct, and tr00578manhe133 will return an authentication error. This mistake can easily be made because tr00578 is the project directory for this user.

2) Reboot the client. Do NOT just press the power button to reboot the thin client! Click “Cancel” to return to the launch menu. From there, click client → restart. After reboot, attempt log in again.

3) If these do not correct the problem, then notify your Administrator. The problem is with your account, which can be due to many things (e.g., the number of failed log in attempts, an expired password, etc.). There is nothing that you can do on your own to solve these.

4.1.2 A Connection Time-out
The problem is that the thin client is not communicating with the server.

1) Make sure the data cable is connected properly to the thin client. If it was attached improperly, then try to log in again.

2) If the cable was fine or if the second log in attempt also failed, reboot the client.

3) Try a different thin client.

4) Notify your Administrator.

4.1.3 Blank Screen After Log-in
Be cautious when processing this fix. An error can delete your home directory.

1) Hard boot the thin client in order to return to the thin client desktop.

2) Double-click the Secure Shell Client icon, press [ENTER] to start a session. Host name is rdc1-1.ces.census.gov and user id is as usual.

3) Once logged in at the command line type:
 cd .nx [ENTER]
 rm -R * [ENTER]
 exit [ENTER]

4) Close the window and then log in as usual.

5) Notify your Administrator.

4.1.4 Session Terminates
Although this usually happens when there is a significant problem with the servers, sometimes the system hiccups and sessions are terminated for no real reason.

1) Reboot the client and attempt log in again. If asked if you would like to resume your previous session, say yes. If this does not work, then

2) Return to the sign-in desktop and try again; but if given the option, then terminate the previous session.

3) Notify your Administrator.
4.1.5 Printing Problems

- If you are having problems printing and the file extension for the document in question is either .sxw or .sxc, then see section 3.8.3 on page 26.
- If you are having problems printing any other files try typing `lpr -P <PrinterName> <FileName>` at the prompt or adding `–P <PrinterName>` in the print dialog box when using GUI print. A list of printer name is in section 2.5.2 on page 12.
- Are the edges cut-off? You can easily change the margin settings. After you have issued the print request a pop-up appears: click Properties (upper-right corner) → Margins tab → if not already, “X” the Use custom margins box → select inches from the drop-down menu (below the measurements) → change the contents of the measurement boxes to .5 for all 4 sides → click Save → “OK”. This need be done only once.
- Are you having trouble with printing from SAS? See section 3.2.4 on page 17.

If neither of these work or they do not describe your problem, then notify your Administrator.

4.2 Reporting Problems

Any time you have a problem with the Thin Clients, please notify your Administrator. The more detail you can give them about what went wrong, how you tried to fix it, whether you were successful or not, the more likely it is they will be able to help you fix it. You should **always** provide your Administrator with the following information.

1) Date and time the problem began.
2) The node(s) you were using.
3) Your User ID.
4) If it is a PBS Pro job, what is the job id.
5) A detailed description of the problem, including what applications and/or data sets you were using, what you were doing when the problem occurred. The exact wording of the error message is very helpful. The more detailed the description, the better and more quickly Census computer technician(s) will be able to fix the problem.
6) Description of any remedial steps you took to diagnose and solve the problem.

If you are unable to contact your local RDC Administrator in a reasonable amount of time, you may try contacting the Administrator at a different RDC. You can find contact information at http://www.census.gov/ces/main/contact.html, but you will need to leave the RDC to access this information because devices with internet connectivity are prohibited in the RDC. All computer problems should be reported to a RDC Administrator or other CES employee.